home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
TeX 1995 July
/
TeX CD-ROM July 1995 (Disc 1)(Walnut Creek)(1995).ISO
/
dviware
/
quicspool
/
mffiles
/
logodesign.mf
< prev
Wrap
Text File
|
1990-10-01
|
4KB
|
171 lines
% $Header: logodesign.mf,v 1.1 88/01/15 12:59:36 simpson Rel $
% $Log: logodesign.mf,v $
% Revision 1.1 88/01/15 12:59:36 simpson
% initial release
%
% Revision 0.2 88/01/13 12:16:31 simpson
% removed trademark notice
%
% Revision 0.1 87/12/11 19:16:34 simpson
% beta test
%
% RCS $Header: logodesign.mf,v 1.1 88/01/15 12:59:36 simpson Rel $
% Makes the TRW logo! Whoopee!
def LOGO =
z0=(0,3.91a);
y1=y0-1a;
fixpt(z1,z0,250);
y2=y1;
over(z2,z1,3.46a);
y3=y0;
z3-z2=z0-z1;
y4=0; fixpt(z4,z0,250); % the imaginary intersection of left of top and base
y5=0; over(z5,z4,1.19a);
y6=0; over(z6,z4,2.45a);
y7=2.16a;
fixpt(z7,z6,70);
y8=y7; z8-z5 = z7-z6;
fill z0--z1--z2--z3..cycle; % Top of the T
fill z5--z6--z7--z8..cycle; % Bottom of the T
% The R requires some erasures. Tricky.
y10=0;
over(z10,z4,3.8a);
y11=y10;
over(z11,z4,5.01a);
y12=2.16a;
fixpt(z12,z11,70);
y13=y12;
z13-z10=z12-z11;
fill z10--z11--z12--z13..cycle; % Bottom parallelogram of the R
pair bigcenter; % Center of major (2.51 diam) circle;
bigcenter=((7.60-.26)*a-(2.51a/2),(3.91a-(2.51a/2)));
pair littlecenter; % Center of the minor (1.08 rad) circle;
littlecenter=((7.60-.26)*a-1.08a, (3.91-1.08)*a);
y14=3.91a; fixpt(z14,z10,70);
y15=y14-1a; fixpt(z15,z10,70);
y16=y14; x16 = xpart bigcenter;
y17=y15; x17 = x16;
fill z14--z15--z17--z16..cycle; % Top left of the R, sort of.
pair rvert; % the imaginary vertex of the R
ypart rvert=2.36a;
fixpt(rvert,z11,70);
y18=0; fixpt(z18,rvert,(250+45.5));
y19=0; x19=x18+1.29a;
x20=x18+.56a;
y21=2.15a; fixpt(z21,rvert,(250+45.5));
path bigsemicircle;
bigsemicircle = (halfcircle scaled (2.51a) rotated (-90)) shifted bigcenter;
path crossline;
crossline = (x18+0.56a, 0)..(x18+.56a, 3a);
z100 = (x18+0.56a, 3*a*xpart (crossline intersectiontimes bigsemicircle) );
y101 = 2.16a; x101=x100;
y102 = y101; fixpt(z102, rvert, (250+45.5));
fill z18--z19--z100--z101--z102..cycle; % Bottom right of the R.
fill bigsemicircle--cycle; % Top right of the R, without the extras.
fill (quartercircle scaled (1.08a*2) shifted littlecenter)--cycle;
x103=(7.60-(.26+1.24))*a; y103 = y15; % Fill in something to carve out
y104=y103; x104 = x103-.31a;
x105=x104; y105 = y104-.31a;
y106=2.16a; x106= x103-(.9/2)*a;
y107=y106; x107=x103;
fill z103--z104--z105--z106--z107--cycle; % Now we have to take away the circs
path bigecirc, smallecirc; % The quarter circles to unfill
pair bigecent, smallecent; % different centers
bigecent = (x106,(2.16a+(.9/2)*a));
smallecent = (x104, y105);
bigecirc = (((quartercircle rotated -90)scaled .9a) shifted bigecent) --
bigecent--cycle;
smallecirc = ((quartercircle scaled (.31a*2)) shifted smallecent) -- smallecent
--cycle;
unfill bigecirc; unfill smallecirc; % We can but hope.
% The W is a *little* easier
z22=(7.6a,3.91a);
z23=(7.6a,2.91a);
z24=((7.6+1.19)*a, 2.91a);
z25-z24=z22-z23;
fill z22--z23--z24--z25..cycle; % Top left rect of W
z26=(7.6a,0);
x27=x26;y27=2.16a;
x28=x24;y28=y27;
x29=x28;y29=y28-.33a;
y30=y28; fixpt(z30,z29,70);
pair wvert; % The bottom vertex of the w, imaginary in the hole
wvert=(9.93a,(2.16+.41)*a);
y31=y30; fixpt(z31,wvert,(270-21.75));
y32=0; fixpt(z32,wvert,(270-21.75));
fill z32--z31--z27--z26..cycle; % Bottom left of W (omit 28...30)
pair uright; % The upper right. Determines where the bottom ends up
uright=(12.82a, 3.91a);
x33=xpart wvert; y33=0;
y34=0; fixpt(z34,uright,(270-22.25));
y35=2.16a; fixpt(z35,uright,(270-22.25));
x36=x33; y36=y35;
y37=y36; x37=x22+3.35a;
x38=x37; y38=y37-.33a;
y39=y37; fixpt(z39,z38,70);
%show z33,z34,z35,z39,z38,z37,z36;
fill z33--z34--z35--z36..cycle; % Bottom right of W (omit 39--38--37)
z40=uright;
y41=y40; fixpt(z41,z38,70);
y42=2.91a; fixpt(z42,z38,70);
y43=y42; fixpt(z43,uright,(270-22.5));
fill z40--z41--z42--z43..cycle; % Upper right trapezoid of W
z44=(x38,y40);
y45=y44; fixpt(z45,z29,70);
y46=y43; fixpt(z46,z29,70);
z47=(x44,y46);
fill z44--z45--z46--z47..cycle; % Top middle trapezoid of W
penlabels(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20);
penlabels(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40);
penlabels(41,42,43,44,45,46,47);
penlabels(100,101,102,103,104,105,106,107);
enddef;